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Abstract
The nonlinear Schrödinger (NLS) equation that gives an account of ‘temporal’
envelope soliton propagation in magnetic thin films is derived, using the
rigorous asymptotic method of multiscale expansions. Magnetostatic backward
volume waves are considered and inhomogeneous exchange is neglected. New
mathematical features concerning multiscale expansions are found: both a
propagating second harmonic term and the usual non-propagating one arise.
The secular-type terms that arise in the transverse direction are no longer
forbidden. The dispersion coefficient of the obtained NLS equation is not
equal to the so-called group velocity dispersion, despite being a general law in
bulk media. The nonlinear coefficient is in quite good agreement with the result
of previous computations for physically relevant values of the parameters.

PACS numbers: 41.20.Jb, 05.45.Yv, 75.50.Gg

1. Introduction

The interest in envelope solitons in magnetic media is twofold: on one hand, the mathematical
properties of the so-called Maxwell–Landau model are of major importance for the nonlinear
wave propagation theory. On the other hand, soliton propagation in thin films is investigated
experimentally with a much more accurate description than, for example, optical solitons.
Further, it is very promising for applications.

The theory of one-dimensional envelope solitons in any case rests on the so-called (cubic)
nonlinear Schrödinger (NLS) equation. Studies have been developed to give a rigorous
mathematical derivation of this equation and of some of its generalizations, as asymptotic
reductions of the Maxwell–Landau model [1–3]. Proof of the convergence of this asymptotic
has been given, from the viewpoint of pure mathematics, in the frame of the multiscale
expansion formalism [4]. The latter thus appears to be the most rigorous way to derive the
NLS equation. These theoretical works essentially concern the propagation of electromagnetic
waves in bulk media only, taking retardation into account. Such waves are sometimes called
magnetic polaritons.
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Besides this, many experiments have been done showing the formation of solitons and
dark solitons [5–7], their collapse or spreading out in two dimensions [8] and so on. Almost
all experiments are performed on thin films of yttrium iron garnet (YIG) in a situation where
retardation is negligible. The considered waves are called magnetostatic spin waves (MSWs).
The film thickness is of the order of the magnitude of the wavelength, or even less. In such
a very thin waveguide, the linear dispersion relation strongly differs from that of the bulk
material [9]. It is expected that the nonlinear properties are also strongly modified. That is
why a multiscale theory taking into account the waveguide properties, and the smallness of its
thickness in an explicit way, appears to be necessary in order to give a rigorous derivation of
the NLS equation commonly used for the description of the experimentally observed solitons
[10–11] and more accurate expressions of its coefficients.

This is the aim of the present paper. Several new features are found and some important
deviations from the usual NLS-type multiscale expansions, valid in a bulk medium, are
observed. The second harmonic is no longer a simple non-propagating term, with the same
velocity as the fundamental, but contains an additional term propagating at the proper second-
harmonic velocity. From a more technical point of view, an important characteristic of the
multiscale theory in bulk media is that it involves the vanishing of the so-called secular terms,
which grow linearly with regard to the variable. In thin films, and in the transverse direction,
linear growth is allowed because of finite film thickness.

A very remarkable result is that the dispersion coefficient, the coefficient of the second
derivative in the NLS equation, differs from the commonly admitted value of the group
velocity dispersion. The expression valid in the bulk medium, using a second derivative of
the dispersion relation, is still valid when the film is relatively large. But it can be strongly
modified for the fundamental mode in a very thin film.

This paper is organized as follows: after the introduction section, the starting model
and hypothesis are set out in section 2. Then the derivation is presented order by order: the
linear dispersion relation that yields the first order of the perturbative scheme is derived in
section 3. The second order involves some interesting features about nonlinear terms and
is presented in section 4. The condition that ensures wave packet propagation at the group
velocity is derived in section 5 and the nonlinear evolution equation (NLS) in section 6. The
coefficients of this equation are studied in section 7 and section 8 yields a conclusion. A large
part of the technical detail of the derivation has been put in several appendices.

2. Setting the problem

2.1. The Maxwell–Landau model for a thin film

We assume that the magnetic medium fills the region of the space between z = 0 and z = L

(figure 1). The upper region is denoted by the letter a, the region below the film by b and the
inside of the film by i. The Maxwell equations in the magnetostatic limit read as

�∇ ∧ �H = �0 (1)
�∇ · ( �H + �M) = 0. (2)

Note that the second-order form of the Maxwell equations (or wave equation) introduces
incorrect solutions in this magnetostatic limit. In contrast, the divergence equation, which
is not needed when retardation is taken into account, is necessary here. Inside the film, the
magnetization �M obeys the so-called Landau–Lifschitz equation which reads

−∂t �M = �M ∧ �H. (3)
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Figure 1. Geometry of the problem and coordinate frame.

The anisotropy and inhomogeneous exchange are neglected. The demagnetizing field does
not appear when �H represents the magnetic field that really exists in the medium.

�M is zero outside the magnetic film. The boundary conditions are magnetostatic: the
tangential component of �H and the normal component of �B = �H + �M are continuous at the
surface of the film z = 0 and z = L. Further, �H tends to some constant applied field �H 0 as z
tends to infinity.

2.2. A scaling

Let us now introduce multiple scales. ε is some small perturbative parameter that will, as
usual, give an account of the smallness of both the signal amplitude and its spectral width.
Precisely, the fields are expanded as

�H =
∑

n�0,|p|�n

εneipφ �Hp

n (4)

�M =
∑

n�0,|p|�n

εneipφ �Mp

n. (5)

The fundamental phase φ reads as

φ = kx − ωt (6)

corresponding to a propagation along the x-axis. The �Hp

n and �Mp

n are functions of the slow
variables ξ = ε(x − V t), τ = ε2t and z. They vanish as ξ −→ −∞, except the uniform

constant applied field �H 0
0 and the corresponding magnetization �M0

0. This is the standard ansatz
used for the derivation of the NLS equation in one dimension. Note that the z variable that
gives an account of the variations inside the film has the order ε0, which means that the order
of magnitude of the film thickness is assumed to be the same as the wavelength. In many
experiments, the thickness is even smaller, but the expansion would become singular with such
an assumption. This would give rise to further mathematical difficulties; and therefore the
corresponding situation is left for further investigation. We assume for the sake of simplicity
that the wave is not modulated transversely. Then it is easily seen from equation (1) that �Hy

is uniform and equation (1) reduces to

∂zHx = ∂xHz. (7)

2.3. The steady state

The zero order of the perturbative expansion is some steady state, determined by some uniform
and constant applied field �H 0, setting the film magnetization to its saturation value m. Outside
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the magnetic medium (regions a and b) there is only the field �H 0
0. The Maxwell equations

show that it is a constant, equal to the exterior field �H 0.

In the magnetic medium (region i), �H 0
0 and �M0

0 are constants with regard to z, and
are collinear. The boundary conditions yield three equations for four unknowns: the failing

condition is the statement that the norm of �M0
0 is equal to the saturation magnetization m. For

the sake of simplicity, we choose the particular case of wave propagation along the direction
of the magnetization. Then

�M0
0 = �m =


m

0
0


 �H 0

0 = α �m (8)

where the parameter α = H0/m gives an account of the external field strength. Avoid
confusion with the inhomogeneous exchange interaction coefficient, which is frequently
denoted by the same letter α, e.g. in [11], but neglected here. MSWs propagating parallel
to the external field have a negative group velocity. This well known result [9] is retrieved
by our formalism (see below). The waves are called magnetostatic backward volume waves
(MSBVWs) in this case.

Before we solve the perturbative scheme, some preliminary reduction of the equations is
needed. The fact that H y is uniform, together with the boundary conditions and the choice of
the external field, yields �Hp,y

n = 0 for any p and n. Then the Maxwell equations reduce to (2)
and (7) with �M = �0 outside the magnetic medium (regions a and b). These equations, together
with (3), are expanded into a power series of ε. The perturbative scheme is then solved by
setting the coefficients of each power of ε on both sides of the equation equal to each other.
For convenience, we define nonlinear terms ��p

n as follows:

ε2 ��p

2 + ε3 ��p

3 + · · · =
∑
r+s=p

(
ε �Mr

1 + · · ·
)

∧
(
ε �Hs

1 + · · ·
)
. (9)

3. Retrieving the linear waveguide dispersion law

3.1. The evanescent waves outside the magnetic medium

We solve equations (2)–(7) at order ε1 with zero magnetization in the regions a and b outside

the magnetic film. It is easily seen from these equations that the components of �H 1
1 are linear

combinations of ekz and e−kz. Assuming k positive and taking into account the vanishing of
�H at infinity, it is found that:

�H 1
1 = A1

1


1

0
i


 e−kz for z > L and B1

1


 1

0
−i


 e+kz for z < 0 (10)

where A1
1 and B1

1 are complex-valued functions of the slow variables.

3.2. Inside the magnetic medium

In the region i, �M1
1 does not vanish and the Landau–Lifschitz equation (3) must be taken into

account. It is first seen that M1,x
1 = 0. The four other equations can be written in the matrix

form
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L1



H

1,x
1

H
1,z
1

M
1,y
1

M
1,z
1


 =




0
0
0
0


 (11)

where the linear operator Lp is written as

Lp =




ipk ∂z 0 ∂z

∂z −ipk 0 0
0 m ipω −αm

0 0 αm ipω


 . (12)

Because this operator appears at each order, it is useful to solve the general system

Lp



Hx

Hz

My

Mz


 =



T x

T z

Uy

Uz


 (13)

for any rhs member (T x, T z, Uy,Uz). This is done in appendix A. The resolution of system
(13) rests on the scalar differential equation(

∂2
z + q2

p

)
Hz = # (14)

where # is some linear functional of the rhs member of the system, given by formula (83) in
appendix A, and

qp = pk

(
p2ω2 − α2m2

α(α + 1)m2 − p2ω2

)1/2

. (15)

Note that qp is not necessarily real. Let us call Hz
s some particular solution of equation (14).

The general solution of the latter is written as

Hz = Reiqpz + Se−iqpz + Hz
s . (16)

In the same way, the other components of �H and �M are expressed as the sum of two terms.
One of these terms is some particular solution of the complete system, which is a linear
combination of Hz

s and the rhs member components. It is denoted below by the subscript s,
and is referred to as the inhomogeneous part of the solution. The other term is the general
solution of the homogeneous system, which is a linear combination of Reiqpz and Se−iqpz. It
is referred to as the homogeneous part of the solution below. Explicit formulae are given in
appendix A.

System (13) is homogeneous, thus H 1,z
1,s = 0. The solution is found from the above-

mentioned general formulae, and for 0 < z < L reads as

�H 1
1 =




k
q

(
R1

1eiqz − S1
1 e−iqz

)
0

R1
1eiqz + S1

1 e−iqz


 (17)

�M1
1 = m

α2m2 − ω2

(
R1

1eiqz + S1
1 e−iqz)


 0

−iω
αm


 (18)

with q = q1 is defined by equation (15) so that

ω2 = α

(
α +

q2

k2 + q2

)
m2. (19)
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Equation (19) is well known [9]; it is the dispersion relation of MSW in an infinite medium,
satisfied by the wave vector (k, 0, q). The waveguide dispersion relation is determined by the
conditions at the surfaces z = 0 and z = L of the film.

3.3. Boundary conditions

The magnetostatic boundary conditions, i.e. the continuity of the parallel components H 1,x
1 ,

H
1,y
1 and of the transverse component

(
H

1,z
1 + M

1,z
1

)
, must be satisfied at the boundaries

z = 0 and z = L of the magnetic film. Using the expressions (10), (17) and (18) of the fields,
they are reduced to the following linear system for

(
A1

1, B
1
1 , R

1
1, S

1
1

)
:

B1
1 = k

q

(
R1

1 − S1
1

)

−iB1
1 = −k2

q2

(
R1

1 + S1
1

)
(20)

A1
1e−kL = k

q

(
R1

1eiqL − S1
1 e−iqL

)

iA1
1e−kL = −k2

q2

(
R1

1eiqL + S1
1 e−iqL

)
.

As above, the resolution of a general version of system (20) is useful. It is done in appendix B.
Note that, at the present order, the system (20) is homogeneous. A wave can thus propagate only
if the rank of the system is at most 3. This condition yields the dispersion relation of the guide

2q cot qL = 1

k
(q2 − k2). (21)

Here we retrieve this well known result [9]. The complete solution at order 1 is then obtained
using the general formulae of appendix B for a homogeneous system. Inside the magnetic
medium it reads as

�H 1
1 =


−ikϕ2

0
qϕ1


 g (22)

�M1
1 =


 0

−iω
αm


 mqgϕ1

α2m2 − ω2
. (23)

Here g is some function of the slow variables ξ and τ to be determined. The mode profiles
are determined by the functions ϕ1 and ϕ2 defined by

ϕ1 = q cos qz + k sin qz (24)

ϕ2 = k cos qz − q sin qz. (25)

Some properties of these profiles are given in appendix C.1.

4. The nonlinear terms

4.1. At second order

In the magnetic medium and at the second order in the perturbation theory, equations (2), (3)
and (7), for the pth harmonic, yield

M
p,x

2 = 1

ipω

(
�

p,x

2 − V ∂ξM
p,x

1

)
(26)



Rigorous derivation of the NLS in magnetic films 9693

and

Lp



H

p,x

2

H
p,z

2

M
p,y

2

M
p,z

2


 =



T
p,x

2

T
p,z

2

U
p,y

2

U
p,z

2


 . (27)

The rhs member of equation (27) has the following expression:

T
p,x

2 = −k

ω

(
�

p,x

2 − V ∂ξM
p,x

1

) − ∂ξ
(
H

p,x

1 + M
p,x

1

)
T
p,z

2 = ∂ξH
p,z

1 (28)

U
p,j

2 = �
p,j

2 − V ∂ξM
p,j

1 for j = y, z.

Except for p = ±1, system (27) has a rank 4. It is not homogeneous and admits a nonzero
solution only if the nonlinear term ��p

2 is not zero.
The nonzero nonlinear terms at this order are

��2
2 = �M1

1 ∧ �H 1
1 (29)

��0
2 = �M1

1 ∧ �H 1,∗
1 + �M1,∗

1 ∧ �H 1
1 (30)

and ��−2
2 = ��2,∗

2 (an asterisk denotes complex conjugation). The term ��2
2 gives rise to some

non-vanishing second harmonic. We study it in this section. ��0
2 gives rise to a mean value

term or the rectified field studied in section 5. They are computed using the results of order 1,
namely formulae (22) and (23), and read

��2
2 = mq

α2m2 − ω2
g2


 −iωqf1

−iαmkf2

ωkf2


 (31)

��0
2 = −2mωkq

α2m2 − ω2
|g|2


 0

0
f2


 (32)

where f1 = ϕ2
1 and f2 = ϕ1ϕ2. Some useful properties of f1 and f2 are given in appendix C.2.

4.2. The second harmonic directly emitted by the fundamental

The x-component of the magnetization density is computed directly from expressions (26) and
(31). It reads

M
2,x
2 = −mq2

2(α2m2 − ω2)
g2f1. (33)

The system (27) is then solved using the formulae proved in appendix A for the general
case (13), as detailed in appendix D.1.1. A particular solution of system (27), that is the
inhomogeneous part of the second harmonic, denoted by the subscript s is first computed.
The key point of this computation is that of the component H 2,z

2,s , a particular solution of
equation (14), with an rhs member #2

2 = νf2, where ν is a constant given by equation (112)
in appendix D.1.1. This solution is sought under the form

H
2,z
2,s = wf2. (34)

It is found that

w = ν

q2
2 − 4q2

. (35)
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This implies that q2 �= 2q , which means that the phase-matching for second-harmonic
generation is not realized. If this were realized, the interaction between fundamental and
second harmonic would be resonant, and an efficient conversion to second harmonic would
produce a non-vanishing amplitude for �H 2

1, the second harmonic at order 1. The assumption
made in our ansatz, that this term is zero, is not consistent if phase matching is realized.
Because it is not the case in real physical situations, we assume that q2 �= 2q is satisfied.
Finally, we get

H
2,z
2,s = −iαmkq

2ω2
g2f2. (36)

The other components of this field are written in appendix A (equations (84), (86) and (88)).
Their inhomogeneous parts read

H
2,x
2,s = mq2

2(α2m2 − ω2)
g2 k

2 + q2

2
+
αmk2

2ω2
g2µ cos q(2z− L) (37)

M
2,y
2,s = −αm2kq

ω(α2m2 − ω2)
g2f2 (38)

M
2,z
2,s = −imkq(α2m2 + ω2)

2ω2(α2m2 − ω2)
g2f2. (39)

As is usual in multiscale expansion, these quantities describe some non-propagating second-
harmonic term that moves at the exact speed of the fundamental.

4.3. A true second harmonic

Outside the magnetic medium, the expression for the second harmonic p = 2 is the same as at
order 1, equation (10), with k replaced by 2k and amplitudes A2

2, B2
2 .

The equations giving account for the boundary conditions, at second order and for the
second harmonic, yield some linear system, analogous to (20) but inhomogeneous. It is solved
using the formulae of appendix B, as detailed in appendix D.1.2. It allows computation of the
homogeneous parts of H 2,x

2 and H 2,z
2 , which read respectively as

2k

q2

(
R2

2eiq2z − S2
2 e−iq2z

) = 4kY

q2
g2 cos q2

(
z − L

2

)
(40)

R2
2eiq2z + S2

2 e−iq2z = 2iYg2 sin q2

(
z − L

2

)
. (41)

The constant Y is given by the following expression:

Y = −mq2q2
2 [q2ω2 − k2(α2m2 + ω2)]

16ω2k(α2m2 − ω2)
[
2k sin q2

L
2 + q2 cos q2

L
2

] . (42)

Adding the homogeneous part ofH 2,z
2 , computed above, to its inhomogeneous partH 2,z

2,s given
by (36) yields

H
2,z
2 = 2iYg2 sin q2

(
z − L

2

)
− iαmkq

2ω2
f2. (43)

The first term in (43) involves q2, which is the z-component of the wave vector satisfying the
dispersion relation in a bulk medium (15) with the pulsation 2ω and an x-component of the
wave vector 2k. Note that q2 can be purely imaginary. In this case, Y is also imaginary and
the sine and cosine functions in the above formulae behave like hyperbolic sine and cosine.
The second term oscillates with the z-component of the wave vector equal to 2q. This feature
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is particular to the waveguide situation. Indeed, in an infinite medium, if no phase matching
occurs, the second harmonic does not propagate with its proper phase and group velocity,
but only accompanies the fundamental having the same velocities. In other words, its phase
dependence involves 2�k(ω) and not �k(2ω). Here, in contrast, q2 appears. The reflection of the
non-propagating second harmonic generates a new component that, unlike what happens in
infinite media, propagates inside the nonlinear medium with its own velocity, at least along the
transverse direction. However, q2 is not a waveguide mode; the equation analogous to (21) is
not satisfied by q2:D2 �= 0. In other words, the second harmonic is not generated resonantly
and this transverse propagation does not correspond to a waveguide mode; thus destructive
interferences forbid the propagation of the second harmonic along the guide. This latter point
is analogous to the case of an infinite medium.

4.4. The zero harmonic or mean-value field

Using (32), the equations (27) reduce to

∂zH
0,x
2 = 0 (44)

∂z

(
H

0,z
2 + M

0,z
2

)
= 0 (45)

m
(
H

0,z
2 − αM

0,z
2

)
= 0 (46)

αM
0,y
2 − �

0,z
2 = 0. (47)

Together with the continuity conditions at z = L and z = 0, with �H 0
2 vanishing in the regions

a and b, this yields

�H 0
2 = 0 M

0,y
2 = −2ωkq

α(α2m2 − ω2)
|g|2f2 M

0,z
2 = 0. (48)

The M0,x
2 component is not determined at all at this order. The equation accounting for this

component is the x-component of the Landau–Lifschitz equation (3) at the following order ε3.
Making use of expressions (22), (23) of H 1

1 , M1
1 , it reads as

V ∂ξM
0,x
2 = �

0,x
3 = −iωmqgϕ1

α2m2 − ω2
H

1,z,∗
2 + qgϕ1M

1,y,∗
2 + c.c. (49)

Therefore, the computation of this nonlinear term involves the expressions of H 1,z
2 , M1,y

2 ,
which are only obtained at the following order (formulae (61), (62)). These expressions are
reported in (49). The terms involving ψ cancel each other, as do the terms involving eiqz and
the terms involving zϕ2. Then �0,x

3 can be reduced to an exact derivative. Assuming that both
g and M0,x

2 vanish as ξ −→ +∞, equation (49) can be integrated and

M
0,x
2 = −(α2m2 + ω2)X

ωαmV
f1 |g|2 . (50)

The ratio X/V is given by formulae (119) below. With regard to the bulk situation (taking
retardation into account), the computation and the expression of this zero-harmonic term are
relatively simple.

5. The group velocity

The expression for the group velocity is again found when computing the term at the
fundamental frequency, at the second order of the perturbative scheme.
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5.1. The ‘secular’ terms are no longer forbidden

The equations for the fundamental frequency term, in the region a outside the magnetic film,
at order ε2, yield the following inhomogeneous system:

∂zH
1,x
2 − ikH 1,z

2 = i∂ξA1
1e−kz (51)

ikH 1,x
2 + ∂zH

1,z
2 = −∂ξA

1
1e−kz. (52)

The general solution of these equations is written, for z > L, as

�H 1
2 = (

A1
2 + iA1

1,ξ z
)
1

0
i


 e−kz. (53)

A1
1,ξ is the ξ -derivative of the function A1

1 = A1
1(ξ, τ ) introduced at order 1. The latter

can be computed; it reads A1
1 = iηk2gekL (η = ±1), but in fact this expression is not

needed to achieve the computation. A1
2 is a function of (ξ , τ ) to be determined. Because

the rhs member of system (51), (52) is a solution of the homogeneous equation, the solution
contains a term proportional to z. In the usual multiscale expansions, such solutions grow
linearly and are called secular. They are not allowed because the field must remain bounded.
Here this is not the case due to the decreasing exponential that ensures the vanishing of the
‘secular’ solution at infinity. Thus, properly speaking, the word ‘secular’ does not apply to
this case, but we still use it for convenience. This is an essential feature because a large
part of the usual multiscale expansion lies on the removal of secularities. We will see that
an analogous feature occurs inside the magnetic medium. In the case of propagation in a
bounded domain, here waveguide, ‘secular’ solutions are allowed. In the region b the result
is analogous.

In the region i, inside the magnetic film, the equations governing the evolution of the
second-order component of the fundamental frequency wave field are given by the system
(27) with the rhs member given by expressions (28). It is solved in the same way as the
general system (13) in appendix A. This computation is detailed in appendix D.2. The
component H 1,z

2 is a solution of the differential equation (14) with the rhs member #1
2 given

by

#1
2 = −q2σ2

k2
gξ ϕ1. (54)

The constant σ 2 depends on the velocity V ; it is given by equation (118) in appendix D.2.
Here, as outside the magnetic medium, the rhs member is the solution of the homogeneous

equation. We search a particular solution of the form of a ‘secular’ solution H
1,z
2,s = wzϕ2. It

is found that

H
1,z
2,s = qσ2

2k2
gξ zϕ2. (55)

Note again an essential characteristic of the present problem with regard to the same kind of
expansion, but in an unbounded medium. When considering the latter situation, such a secular
term, proportional to z, increases linearly up to infinity. Since the field must be bounded,
the secular terms are removed yielding the condition giving the group velocity. Here, the
medium is bounded; thus H 1,z

2,s is bounded, even with the term proportional to z. Thus the
condition giving the group velocity is not given by the non-secularity condition, as it used
to be in multiscale expansions for the waves propagating in a infinite media, but will appear
elsewhere. The other field components are expressed as the general solution in appendix A.
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Their inhomogeneous parts read

H
1,x
2,s = X

k
gξ ϕ2 +

iσ2

2k
gξ zϕ1 (56)

M
1,y
2,s = −iωmqσ2

2(α2m2 − ω2)k2
gξ zϕ2 − (α2m2 + ω2)X

ωαmq
gξ ϕ1 (57)

M
1,z
2,s = αm2qσ2

2(α2m2 − ω2)k2
gξ zϕ2 − 2iX

q
gξ ϕ1. (58)

5.2. The waveguide conditions

The boundary conditions, analogous to those written at order 1, are solved using the formulae
derived in appendix B in a general frame. Details are given in appendix D.2. The compatibility
condition for this system yields the following expression for the wave packet velocity:

V = −αm2q2kL

(k2 + q2) ω [L(k2 + q2) + 2k]
. (59)

Taking the k-derivative of the two equations (19) and (21), which constitute the dispersion
relation, it is proved that V is the group velocity, V = dω

dk
, of the wave. Expression (59) is

well known. It gives the group velocity of a magnetostatic backward volume spin wave.
Then the complete expression of the field components at this order is found. It reads

H
1,x
2 = −ikψ ϕ2 +

X

k
gξ ϕ2 +

iσ2

2k
gξ zϕ1 +

iqX

k + iq
gξ e−iqz (60)

H
1,z
2 = qψ ϕ1 +

qσ2

2k2
gξ zϕ2 − iq2X

k(k + iq)
gξ e−iqz (61)

M
1,y
2 = −iωm

α2m2 − ω2

(
qψ ϕ1 +

qσ2

2k2
gξ zϕ2 − iq2X

k(k + iq)
gξ e−iqz

)
− (α2m2 + ω2)X

ωαmq
gξ ϕ1

(62)

M
1,z
2 = αm2

α2m2 − ω2

(
qψ ϕ1 +

qσ2

2k2
gξ zϕ2 − iq2X

k(k + iq)
gξ e−iqz

)
− 2iX

q
gξ ϕ1. (63)

Explicit expressions of the quantities A1
1, A1

2, etc, can be computed and give the expressions
for the fields outside the medium. Since they are not needed in the following, we shall omit
them.

6. The nonlinear evolution equation

6.1. The nonlinear term at third order

Outside the magnetic medium, the equations at order ε3 at fundamental frequency are
analogous to the previous order, equations (51) and (52), but with a slightly more complicated
rhs member. Details are given in appendix E.1. In the upper region a, the field is given by

�H 1
3 = (

A1
3 + iA1

2,ξ z − 1
2A

1
1,ξξ z

2
)

e−kz


1

0
i


 . (64)

Inside the nonlinear medium, the components of the fundamental frequency field at this
order satisfy some system of the same type as (13). It involves a nonlinear term that divides
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into two parts: ��1
3 = ��1,(0)

3 + ��1,(2)
3 . The first term ��1,(0)

3 = �M1
1 ∧ �H 0

2 + �M0
2 ∧ �H 1

1 gives

an account of the self-interaction through the rectified field; the second one, ��1,(2)
3 = �M−1

1 ∧
�H 2

2 + �M2
2 ∧ �H−1

1 , gives an account of the self-interaction through the second harmonic that is

called cascading in nonlinear optics. Not all the components of ��1
3 are needed, but only �

1,x
3

and the combination iω�1,z
3 − αm�

1,y
3 . The latter reads

iω�1,z
3 − αm�

1,y
3 = {θ1 ϕ2 sinχ + θ2 ϕ1 cosχ + θ3f2ϕ2 + (θ4f1 + θ5)ϕ1}g|g|2. (65)

The variable χ is a shortcut for

χ = q2

(
z − L

2

)
. (66)

The explicit expressions of the coefficients θ j are given in appendix E.2. The x-component
reads

�
1,x
3 = [ρ1 sinχ + ρ2f2]ϕ1 g|g|2. (67)

The term involving the coefficient ρ1 in formula (67) gives an account of cascading, while the
term involving ρ2 gives an account partly of cascading and partly of the interaction with the
zero harmonic or mean-value field.

6.2. Solution of a differential equation

The boundary conditions yield some linear inhomogeneous system of the same type as
(20), whose compatibility condition is the nonlinear evolution equation sought for the wave
amplitude g. An essential point of the derivation is to solve equation (14), satisfied by H

1,z
1 ,

with the following expression for the rhs member:

−k2

q2
#1

3 = σ1gτ ϕ1 + σ2ψξ ϕ1 +
[
σ3 ϕ1 + σ4 zϕ2 + σ5 e−iqz] gξξ +

[
σ6 ϕ2 sinχ + σ7 ϕ1 cosχ

+ σ8 ϕ
3
1 + σ9 ϕ1ϕ

2
2 + σ10 ϕ1

]
g|g|2. (68)

The expressions for the coefficients σ j, together with details on the computation, are given in
appendix E.3. The inhomogeneous part H 1,z

3,s of H 1,z
3 is then computed. It reads as

H
1,z
3,s = qσ1

2k2
zϕ2 gτ +

qσ2

2k2
zϕ2 ψξ +

[qσ3

2k2
zϕ2 − σ4

4k2

(
q z2ϕ1 + zϕ2

)
+
qσ5

2ik2
ze−iqz

]
gξξ

+

[
Q1 ϕ2 sinχ + Q2 ϕ1 cosχ +

q(k2 + q2)

8k2
(3σ8 + σ9)zϕ2

+
σ8 − σ9

8k2

(
f1 − k2 + q2

2

)
ϕ1 +

qσ10

2k2
zϕ2

]
g |g|2. (69)

Then, with some computational work detailed in appendix E.4, the compatibility condition
for the boundary conditions can be written explicitly. The term containing ψξ vanishes. After
division by an adequate quantity, the compatibility condition reduces to the following evolution
equation for the field amplitude g:

igτ + Bgξξ + Cg|g|2 = 0. (70)

As expected, equation (70) is the NLS equation.
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Figure 2. Plot of the waveguide dispersion relation. The unit is the inverse 1/L of the film
thickness.

7. The coefficients of the NLS equation

7.1. The dispersion coefficient is not the group velocity dispersion

After reduction, the expression of the dispersion coefficient B of the NLS equation (70)
reads as

B = m

k2

kL(ω̃2 − α(1 + α))

2ω̃3(α(2(1 + α) + kL) − 2ω̃2)3
[16ω̃2(α(1 + 2α)− 2ω̃2)(ω̃2 − α(1 + α))2

+αk2L2(α2 − ω̃2)(α3(1 + α) + 2α(1 + α)ω̃2 − 3ω̃4)

+ 2kL(α2 − ω̃2)(α(1 + α) − ω̃2)(α3(1 + α) + 2αω̃2 − ω̃4)] (71)

where ω̃ = ω/m. The so-called ‘method of envelopes’, used in [10] to derive the NLS
equation, states that this coefficient is ω′′/2 = 1

2
d2ω
dk2 , where the function ω(k) is the dispersion

relation. This statement seems to be fully correct from the mathematical point of view in bulk
media, but here in a very thin film we have a different result. We compare numerically the
coefficient B given by equation (71) to ω′′/2, where ω(k) is defined by equations (19) and
(21).

The waveguide dispersion relation (21) can be solved. Considering k as a function of q,
there are two solutions

k = −q cot
qL

2
(72)

k = q tan
qL

2
. (73)

Relations (72) and (73) are transcendent and cannot be inverted explicitly. They are plotted
in figure 2. The relation (72) is the solid curve and (73) is the dashed curve. They will be
referred to as branch I and branch II, respectively, below. Apart from the material and field
characteristics m and α, the parameters of wave are ω, k, q and the waveguide thickness L.
These four parameters are related to each other by relations (19) and (21). Making use of
the parameters k and qL allows the explicit solution of the dispersion relation. Figures 3
(branch I) and 4 (branch II) give the plots of B and ω′′/2 against qL for a fixed value of k. Due
to homogeneity the curve does not depend on this value if the unit for B and ω′′/2 is m/k2.
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Figure 3. Plot of B (solid curve) and ω′′/2 (dashed curve) against qL for a constant value of k,
for branch I of the dispersion relation. The field strength parameter is α = 1.

It is seen that B is very close to ω′′/2, except if qL is small, say qL � 5. And when qL is
very small, the two quantities do not have the same order of magnitude any more. On branch
I in figure 3, ω′′/2 vanishes much faster than B. On branch II in figure 4, B becomes infinite
while ω′′/2 tends to a finite limit. Looking at q and L as functions of qL shows that the small
values of qL correspond to the first waveguide modes. The modes can be labelled using the
following limiting case: for large values of L, the transverse wave vector q tends to the limit
nπ/L, n being an arbitrary integer, odd when q satisfies (72) and even when q satisfies (73).
The integer n can be used to label the modes even if L is not large. Then, the small values
of qL correspond to n = 0 or 1. As qL tends to 0, L remains bounded: its limiting value is
−2/k on branch I and 0 on branch II. Thus, the situations where qL is small can arise only if
the value of the film thickness L is small enough. A plot of B and ω′′/2 against L (figure 5)
clarifies this statement: they almost coincide for any mode except the first one of each type.
An important discrepancy arises close to the value L = −2/k where B diverges while ω′′/2
remains finite, which has already been observed in figure 4. An approximation of the involved
quantities can be computed as k approaches −2/L. The dispersion relations are solved as

ω � αm q �
√

6(k + 2/L)

L
. (74)

The dispersion coefficients read

B � −m

2L(k + 2/L)3
ω′′/2 � −9(5 + 8α)L2m

160α
. (75)

Formula (75) confirms the observation made in figures 3 and 5(d). On the other hand, B and
ω′′/2 coincide as qL tends to infinity,

B ∼ ω′′/2 ∼ m
√
α sin2 qL[16α − 2 + 8(1 + 4α)η cos qL− 6 cos 2qL]

32
√

2 k2(1 + 2α − η cos qL)3/2
(76)

where η = +1 on branch I and η = −1 on branch II. The coefficient B that accounts for the
dispersion in the NLS equation (70) is thus very close to the commonly admitted expression
ω′′/2, except when the product qL takes very small values. This situation corresponds to the
first two waveguide modes and appears mainly in very thin films (L small).
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Figure 4. Plot of B (solid curve) and ω′′/2 (dashed curve) against qL for a constant value of k,
for branch II of the dispersion relation. The field strength parameter is α = 1.
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Figure 5. Plot of B (solid curve) and ω′′/2 (dashed curve) against L for  constant value of k. (a)
and (b) present branch I of the dispersion relation; (c) and (d) present branch II. The field strength
parameter is α = 1.

7.2. The nonlinear coefficient

The nonlinear coefficient C in equation (70) can be explicitly computed using the formulae
listed in this paper, but its expression cannot be reduced to a reasonable length. A value
has been given for this coefficient by Slavin and Rojdestvenski [11] using the description
of the MSW spectrum of [12]. In order to compare both results, we need to use the same
normalization of the wave amplitude. In [11], the function : that obeys the NLS equation is
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Figure 6. Comparison of the values of the normalized nonlinear coefficient T/m (or N/m) of the
NLS equation according to the ‘method of envelopes’ (dotted curve), the work by Slavin and Rod-
jestvenski (dashed curve) and the present paper (solid curve). Parameter values are α = 1066/1750
and L = 7.2 µm.

‘a dimensionless magnetization’. Using the notation of the present paper, and according to
both equation (3) in [11] and the scaling (5), it satisfies

|:|2 =

∥∥∥ �M1
1

∥∥∥2

2m2
. (77)

According to the expression (107) of ϕ1 and assuming that their average squared values are

equal, we can identify the function ;n(ξ) in formula (21) of [11] as
√

2ϕ1√
k2 + q2 + 2k/L

and have

|:| = |ϕn;n|. The nonlinear factor C|g|2 in equation (70) can be identified as the nonlinear
factor −T |ϕn|2 in equation (49) of [11]. We obtain

T = −C
4(α2m2 − ω2)2

q2(k2 + q2 + 2k/L)(ω2 + α2m2)
. (78)

The value of the coefficient T obtained in this paper is numerically compared to that of
[11], for the waveguide mode 0, as shown in figure 6. The explicit expression of the latter
reads as

T0 = m ekL

32αk2L2(ekL − 1 + αkL ekL)

(
e−3kL(ekL − 1)

(√
2(ekL − 1) +

(
2 −

√
2
)
kL ekL

)

× (ekL − 1 + 2αkL ekL) − 4e−4kL(ekL − 1)2(e2kL − 1 − 2kL e2kL)

+ 4kL(e−kL − 1 − 2αkL)2

(
e−kL − 1 + kL√

2 kL
− 1

))
. (79)

A less rigorous approximation, the ‘method of envelopes’, gives another value of this
coefficient, denoted by N in [11]. For the mode 0, it reads as

N = −αm(1 − e−kL)

kL

√(
2α 1−e−kL

kL

)2
−

(
1−e−kL

kL

)2
. (80)

The parameter values in figure 6 are the same as in figure 1 of [11]. Our results are in good
agreement with those of [11] for very small values of k. Surprisingly, they become much closer
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Figure 7. Plot of the normalized nonlinear coefficient T/m against the film thickness L. Solid
curve; branch I, dashed curve; branch II. (a) Wave vector k is positive; k = 1 µm. (b) Wave vector
k is negative; k = −1 µm. External field: α = 1.

to that of the ‘method of envelopes’ for larger values of k. Note that we have neglected the
inhomogeneous exchange interaction and the corresponding exchange boundary conditions
taken into account in [11, 12]. We have set the corresponding parameters denoted by α and d,
respectively, to 0 in the quoted references for comparison. In the YIG films, in the range where
the discrepancy between both the theories is important, inhomogeneous exchange cannot be
neglected.

The dependence of the normalized nonlinear coefficient T with regard to the film thickness
L can be determined in the same way as the dispersion coefficient. We make use of the
expressions (72) and (73) that solve explicitly the waveguide dispersion relation (21) to draw T
against L using a parametric representation with the parameter qL. The result is given in figure 7.
It is seen that T takes large positive values when the film thickness tends to 0 and negative
values in the range of −0.5 × m to 0 for values of L of a few micrometres. A much larger
negative value of T is obtained at the limit L = −2/k.

8. Conclusion

The nonlinear evolution equation for one-dimensional ‘temporal’ solitons in magnetic thin
films is derived in a rigorous way using a multiscale expansion. The study was restricted to
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propagation parallel to the constant applied field (MS BVW) neglecting the inhomogeneous
exchange and anisotropy. The asymptotic model is naturally the NLS equation, but the
coefficients differ from the values computed by less rigorous approaches. A very remarkable
feature is that the dispersion coefficient differs from the k-derivative of the group velocity.
This occurs for the two lowest order modes when the transverse wave vector is small compared
to the inverse of the film thickness and conversely. The nonlinear coefficient also differs from
the values computed using other theories, but the difference is rather small for some typical
common experimental values for which inhomogeneous exchange is negligible.

Until now, nonlinear evolution equations for envelope solitons (i.e. NLS-type equations)
have been derived by means of the rigorous method of multiscale expansions in bulk media
only. The waveguide properties are taken into account for almost the first time in the present
paper. I say almost, because the same problem has been solved simultaneously for an optical
waveguide filled with a Kerr material by my co-workers [13]. The same particularities
appear in both cases, especially regarding the dispersion, which is in fact a linear description
problem of the wave packet. An appreciable discrepancy between the so-called ‘group velocity
dispersion’ and the dispersion coefficient of the NLS equation appears for very thin magnetic
films. Many technical features are analogous, especially those I called ‘transversal secular
terms’ above. In magnetic films the nonlinear process is quadratic. Therefore, some particular
features arise in the behaviour of the second harmonic: while in bulk media only a non-
propagating second harmonic term can have a significant interaction with the fundamental
at the considered scales, in thin films, another second harmonic term arises and interacts. It
propagates in the sense that its wave vector is the proper one for a second harmonic. But the
interaction is still non-resonant because this second harmonic does not belong to a waveguide
mode.
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Appendix A. Solution of the general system (13)

An adequate linear combination of the last two equations eliminates My and yields

Mz = αm2

α2m2 − p2ω2
Hz + = (81)

with

= = ipωUz − αmUy

α2m2 − p2ω2
. (82)

Taking the z-derivative of the first equation and subtracting from it ipk times the second
equation eliminates Hx . Substituting in the obtained equation the above expression of Mz

yields the differential equation (14) forHz. The rhs member of this equation has the following
expression:

# = q2
p

p2k2

(
∂2
z =− ∂zT

x + ipkT z
)
. (83)

Denoting by Hz
s some particular solution of equation (14) we obtain the expression (16)

of Hz. Making use of the above expression (81) of Mz yields

Mz = αm2

α2m2 − p2ω2
(Reiqpz + Se−iqpz) + Mz

s (84)
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where

Mz
s = αm2

α2m2 − p2ω2
Hz

s + =. (85)

Hx is deduced from the first equation of the system (13)

Hx = pk

qp
(Reiqpz − Se−iqpz) + Hx

s (86)

Hx
s = T x

ipk
− ipk

q2
p

∂zH
z
s − 1

ipk
∂z=. (87)

My is computed from the last equation of the system (13)

My = −ipωm

α2m2 − p2ω2
(Reiqpz + Se−iqpz) + My

s (88)

My
s = −ipωm

α2m2 − p2ω2
Hz

s +
αmUz + ipωUy

α2m2 − p2ω2
. (89)

Appendix B. Resolution of a second general system

B.1. The system

We intend to solve the following system that appears when writing the boundary conditions at
each order and for any harmonic,

B = pk

qp
(R − S) + J0 −iB = −p2k2

q2
p

(R + S) + K0

(90)

Ae−pkL = pk

qp
(ReiqpL − Se−iqpL) + JL iAe−pkL = −p2k2

q2
p

(ReiqpL + Se−iqpL) + KL.

Elimination of A and B reduces system (90) to

(pk − iqp)R + (pk + iqp)S = q2
p

pk
(K0 + iJ0)

(91)

(pk + iqp)eiqpLR + (pk − iqp)e−iqpLS = q2
p

pk
(KL − iJL).

The determinant of this linear 2 × 2 system reads as

Dp = 2i
[(
q2
p − p2k2

)
sin qpL − 2pkqp cos qpL

]
. (92)

B.2. Non-invertible case

At order ε1 the system is homogeneous. The trivial solution R1
1 = S1

1 = 0 is excluded;
therefore, we must haveD1 = 0. This yields the dispersion relation (21). The general solution
of (91) for p = 1 can then be written as

R = (iq + k)
qg

2i
S = (iq − k)

qg

2i
+ Ss (93)

where g is an arbitrary complex number and

Ss = q2

k(k + iq)
(K0 + iJ0). (94)

The normalization is chosen in order to simplify the expressions below.
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The general solution (16), (84), (86) and (88) of system (13) for p = 1 can then be written
as

Hx = −ikgϕ2 − k

q
Sse−iqz + Hx

s (95)

Hz = qgϕ1 + Sse−iqz + Hz
s (96)

My = −iωm

α2m2 − ω2

(
qgϕ1 + Sse−iqz) + My

s (97)

Mz = αm2

α2m2 − ω2

(
qgϕ1 + Sse−iqz

)
+ Mz

s (98)

where ϕ1 and ϕ2 are defined by equations (24) and (25).
The compatibility condition of system (91) reads∣∣∣∣∣

k − iq q2

k
(K0 + iJ0)

(k + iq)eiqL q2

k
(KL − iJL)

∣∣∣∣∣ = 0. (99)

Using formula (105) below, it reduces to

(KL − iJL) + η(K0 + iJ0) = 0. (100)

Expressions can also be given forA and B, but they are not useful for pursuing the computation.

B.3. Other terms

For p �= ±1, the determinant Dp is a priori not 0. We assume that it never vanishes, which
means that none of the waveguide modes of the higher harmonics coincide with the chosen
mode of the fundamental. This is satisfied in real physical situations. Then system (91) admits
a unique solution. If the additional condition

JL = J0 KL = −K0 (101)

is satisfied, this solution reduces to

R = Gpe−iqp
L
2 (K0 + iJ0) (102)

S = −Gpe+iqp
L
2 (K0 + iJ0) (103)

where

Gp = 2q2
p

pkDp

[
pk cos qp

L

2
− qp sin qp

L

2

]
. (104)

Appendix C. Properties of some functions

C.1. Functions ϕ1 and ϕ2

These functions are defined above by (24) and (25). They give the z-dependence of the
considered waveguide mode. We give here some of their useful algebraic properties. We have
∂zϕ1 = qϕ2, ∂zϕ2 = −qϕ1, ϕ1(0) = q and ϕ2(0) = k. Expanding the expression (24) of
ϕ1(L)

2 and using the dispersion relation (21) yields ϕ1(L) = ηq with η = ±1. An analogous
procedure shows that ϕ2(L) = −ηk. It is easily seen that

(k + iq) eiqL = ϕ2(L) + iϕ1(L) = −η(k − iq). (105)
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For branch I of the dispersion relation (21), expression (72), the expression of ϕ1 can be
factorized as

ϕ1 = k

cos qL/2
sin q

(
z − L

2

)
. (106)

Using expression (73), that is, for branch II, we get

ϕ1 = k

sin qL/2
cos q

(
z − L

2

)
. (107)

Note that cos qL/2 = sin qL/2 = ±k√
k2 + q2

.

C.2. Functions f1 and f2

They are defined by f1 = ϕ2
1 and f2 = ϕ1ϕ2, and appear in the computation of the nonlinear

terms at second order. These functions can be re-expressed as follows. The dispersion relation
(21) can be rewritten as

qk

sin qL
= q2 − k2

2 cos qL
= µ (108)

where µ is some constant. Then

f1 = q2 + k2

2
+ µ cos q(2z− L) (109)

f2 = −µ sin q(2z− L). (110)

It follows from these expressions that ∂zf1 = 2qf2, and so on. We also have f2(0) = qk =
−f2(L).

Appendix D. Some additional detail on the derivation

We give in this appendix some technical detail about the resolution of the perturbative scheme
that has been omitted in the text for the sake of clarity.

D.1. The second harmonic

D.1.1. Inhomogeneous term. The system (27) is solved using the formulae proved in
appendix A for the general system (13). =2

2 is given by equation (82), in which U
2,j
2 = �

2,j
2

for j = y, z, given by equation (31). It is written as

=2
2 = imkq(2ω2 + α2m2)

(α2m2 − 4ω2)(α2m2 − ω2)
f2g

2. (111)

(=2
2 denotes the value of = corresponding to the second order and second harmonic, and so

on.) H 2,z
2 is a solution of equation (14) with the rhs member #2

2 defined by equation (83) and
given by #2

2 = νf2 where

ν = −3iq2
2q

3

2k

α2m3g2

(α2m2 − 4ω2)(α2m2 − ω2)
. (112)

The expression (35) of the particular solution H
2,z
2,s follows, provided that q2 �= q . The other

field components are written in appendix A (equations (84)–(89)).
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D.1.2. Homogeneous term. The equations giving an account of the boundary conditions
at second order for the second harmonic are given by the system (90) in which
p = 2, A = A2

2, etc, and the rhs member is defined by

J 2
2,z0

= H
2,x
2,s

∣∣∣
z=z0

K2
2,z0

= H
2,z
2,s + M

2,z
2,s

∣∣∣
z=z0

for z0 = 0 and z0 = L. (113)

Using the above expressions (36)–(39) of �H 2
2, �M2

2 and the properties of f2 listed in appendix C,
it is seen that J 2

2,0 = J 2
2,L and K2

2,L = −K2
2,L. Then R2

2 and S2
2 are computed using formulae

(102) and (103) and read

R2
2 = Y e−iq2

L
2 g2 (114)

S2
2 = −Y eiq2

L
2 g2 (115)

where

Y = G2
imq2

4(α2m2 − ω2)ω2
[q2ω2 − k2(α2m2 + ω2)]. (116)

G2 is given by (104), and is reduced to yield the expression (42) for Y . This allows computation
of the expressions (40) and (41) of the homogeneous parts of H 2,x

2 and H
2,z
2 , respectively.

H
2,z
2 has the expression (16) where the first term involving R2

2 and S2
2 is given by (41) and the

particular solution H 2,z
2,s of equation (14) is given by (36) yielding formula (43). This achieves

the computation of the second harmonic at second order.

D.2. The fundamental frequency term at second order

Inside the magnetic film, the evolution of this component is governed by system (27), with a

rhs member given by expressions (28). For p = 1, ��1
2 is zero and using (22), (23), it reduces

to




T
1,x

2

T
1,z

2

U
1,y
2

U
1,z
2


 =




ikgξϕ2

qgξϕ1

iω
mVq

α2m2 − ω2
gξϕ1

−αm
mV q

α2m2 − ω2
gξϕ1



. (117)

System (27) is solved in the same way as the general system (13) in appendix A. Formula
(55) gives a particular solution H

1,z
2,s of equation (14) with the rhs member #1

2 given by
expression (54). The constant σ 2 involved in this formula reads

σ2 = −2iq(X + k) (118)

where

X = ωαm2q2V

(α2m2 − ω2)2
. (119)

The other field components are expressed like the general solution (84)–(89), with
constants R1

2 and S1
2 .

The boundary conditions yield the same kind of linear system as (20), but are
inhomogeneous. It reads like (90) in appendix B with

A = A1
2 + iA1

1ξL B = B1
2 . (120)
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The expression for the rhs member is completely analogous with equation (113). The
compatibility condition (100) then reduces to

X = −kL(k2 + q2)

L(k2 + q2) + 2k
. (121)

This yields expression (59) for the velocity V .
R1

2 and S1
2 are given by expression (93), where g is replaced by a new indeterminate

function ψ , and where

S1
2,s = −iq2

k(k + iq)
Xgξ (122)

is computed using equations (94). Then the expressions (60)–(63) of the field components at
this order are found from equations (95) to (98).

Appendix E. The third order of the perturbative scheme

E.1. The problem to be solved

Outside the magnetic medium, the rhs member of the equation analogous to (51) (in the upper

region a) reads i
(
A1

2,ξ + iA1
1,ξξ z

)
e−kz. The solution is given by equation (64). There is an

analogous expression for the lower region b.
Inside the nonlinear medium, the system satisfied by the components of the fundamental

frequency field at this order is (13) with

T
1,x

3 = −ikM1,x
3 − ∂ξ

(
H

1,x
2 + M

1,x
2

)
T

1,z
3 = ∂ξH

1,z
2

(123)
U

1,j
3 = −V ∂ξM

1,j
2 + ∂τM

1,j
1 + �

1,j
3 for j = y, z.

The compatibility condition (100) for the fundamental at this order gives the nonlinear
evolution equation for the wave amplitude g. Because we are only interested in this evolution
equation, let us look first at the boundary conditions. As at order 2, they yield a system of the
same type as (90) with

A = A1
3 + iA1

2,ξL − 1
2A

1
1,ξξL

2 B = B1
3 (124)

and a rhs member defined by

J 1
3,z0

= H
1,x
3,s

∣∣∣
z=z0

K1
3,z0

= −k2

q2
H

1,z
3,s + =1

3

∣∣∣∣
z=z0

(125)

for z0 = 0 and z0 = L. The derivation is achieved after the explicit computation of
J 1

3,0,K
1
3,0, J

1
3,L and K1

3,L.

E.2. Nonlinear term

We need to compute the following components of ��1
3: �

1,x
3 and the combination iω�1,z

3 −
αm�

1,y
3 . The latter is computed using the expressions (36)–(39) and (40), (41) for the second

harmonic term, and the expression (50) forM0,x
2 and (48) forM0,y

2 . We obtain expression (65)
in which the coefficients have the following values

θ1 = 2mkY(α2m2 + 2ω2)

α2m2 − 4ω2
θ2 = −4mkqY

q2
(126)

θ3 = −αm2k2q(α2m2 + 3ω2)

2ω2(α2m2 − ω2)
+

2ω2k2q

α(α2m2 − ω2)
(127)
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θ4 = −αm2q

2

(
k2

ω2
+

q2

α2m2 − ω2

)
+

−q(α2m2 + ω2)X

ωV
(128)

θ5 = 1

4
(k2 + q2)m2q

(
αk2

ω2
− q2

α2m2 − ω2

)
. (129)

The x-component is computed in an analogous way and given by equation (67) in which
the coefficients have the values

ρ1 = 2qωm(α2m2 + 2ω2)Y

(α2m2 − 4ω2)(α2m2 − ω2)
(130)

ρ2 = −αm2kq2

2ω(α2m2 − ω2)
+

−2ωkq2

α(α2m2 − ω2)
. (131)

E.3. Solution of equation (14) at third order

The equations of the perturbative scheme at this order are given by system (13) with the rhs
member given by (123). In order to solve it, we use the formulae of appendix A and first
compute =1

3 defined by equation (82). Using the relations (23), (62), (63) and (65), it yields

=1
3 = σ1

q2
gτϕ1 − 2iX

q

[
ψξϕ1 − iqX

k(k + iq)
gξξ e−iqz +

σ2

2k2
gξξϕ2z

]
+ λ1gξξϕ1 +

1

α2m2 − ω2

×
[
θ1 sinχ ϕ2 + θ2 cosχ ϕ1 + θ3f2ϕ2 + θ4f1ϕ1 + θ5ϕ1

]
g |g|2 (132)

with

σ1 = 2iqX

V
λ1 = −(α2m2 + 3ω2)VX

(α2m2 − ω2)ωq
. (133)

#1
3 is defined by equation (83). The first two terms in its expression are given by (123) and

can be reduced using the first equation of system (27) for p = 1. The involved field components
are given by relations (22), (61) and (67). After some reduction we get equation (68)
in which

σ3 = −q − 2iXσ2

k2
+ λ1q

2 σ4 = σ 2
2

2k2
σ5 = −iqXσ2

k(k + iq)
(134)

σ6 = −kqρ1

ω
+
θ1

(
q2 + q2

2

)
+ 2θ2qq2

α2m2 − ω2
(135)

σ7 = −kq2ρ1

ω
+

2θ1qq2 + θ2
(
q2 + q2

2

)
α2m2 − ω2

(136)

σ8 = kqρ2

ω
− (2θ3 − 3θ4) q

2

α2m2 − ω2
(137)

σ9 = −2kqρ2

ω
+
(7θ3 − 6θ4) q

2

α2m2 − ω2
σ10 = q2θ5

α2m2 − ω2
. (138)

H
1,z
3,s is a particular solution of equation (14) with the rhs member #1

3 . Using the
expressions of the z-derivatives of the functions ϕj and fj, the elementary particular solutions
of equation (14) can easily be computed. As an example, for # = ϕ1, a solution is

Hs = −1

2q
ϕ2z. (139)
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The resolution presents a difficulty when # = −q2

k2

(
σ8ϕ

3
1 + σ9ϕ1ϕ

2
2

)
, because ϕ3

2 + ϕ2ϕ
2
1 =

(k2 +q2)ϕ2 is a solution of the homogeneous equation. A particular solution Hs can be obtained
from the form

Hs = w1
(
ϕ3

2 + ϕ2ϕ
2
1

)
z + w2

(
ϕ3

1 − ϕ1ϕ
2
2

)
. (140)

After the computation of w1 and w2 and making use of the identity ϕ2
1 − ϕ2

2 =
2µ cos q (2z − L), the expression (140) of Hs reduces to

Hs = q(k2 + q2)

8k2
(3σ8 + σ9)ϕ2z +

σ8 − σ9

8k2
ϕ1

(
f1 − k2 + q2

2

)
. (141)

A combination of these elementary particular solutions yields the expression (69) of H 1,z
3,s .

The additional coefficients read as

Q1 = q2

k2q2

q2σ6 − 2qσ7

q2
2 − 4q2

Q2 = q2

k2q2

q2σ7 − 2qσ6

q2
2 − 4q2

. (142)

E.4. End of the derivation

According to (125) the other quantity needed for the computation of the quantities J 1
3,0, . . . ,

that appear in the compatibility condition (100) is H 1,x
3,s given by formula (87). It involves the

z-derivatives of H 1,z
3,s and =1

3 given by (69) and (132), respectively. It has the form

H
1,x
3,s = (µ1 ϕ2 + µ2 zϕ1)gτ + (µ3 ϕ2 + µ4 zϕ1)ψξ +

[
µ5 ϕ2 + µ6 zϕ1 + µ7 z

2ϕ2

+ (µ8 + µ9z)e−iqz
]
gξξ +

[
µ10 ϕ1 sinχ + µ11 ϕ2 cosχ + µ12 ϕ2

+µ13 zϕ1 + µ14 ϕ2ϕ
2
1 + µ15 ϕ

3
2

]
g|g|2 (143)

where the coefficientsµj have relatively simple expressions, involving the quantities computed
above (θ j, σ j, Qj, etc), that we shall omit.

The quantities J 1
3,0, etc are given by expression (125). They can be written in the form

J 1
3,0 = kµ1gτ + kµ3ψξ + j1,0gξξ + j2,0 g |g|2 (144)

K1
3,0 = σ1

q
gτ − 2iXψξ + κ1,0gξξ + κ2,0 g |g|2 (145)

J 1
3,L = −η(kµ1 − qµ2L)gτ − η(kµ3 − qµ4L)ψξ + j1,Lgξξ + j2,L g|g|2 (146)

K1
3,L = ησ1

2q
(2 + kL)gτ − η

(
2iX − σ2kL

2q

)
ψξ + κ1,Lgξξ + κ2,L g |g|2 (147)

where the coefficients j1,0, j2,0, etc are easily computed using the previous formulae. The
expression of the velocity V , or rather of the parameter X, ensures that the term containing ψξ

vanishes from the compatibility condition. The coefficient of the term gτ is −iL(k2 + q2)/V .
After division by this quantity, the compatibility condition reduces to the NLS equation (70).
The coefficients of this equation read as

B = −V

L(k2 + q2)
[κ1,0 + ηκ1,L + ij1,0 − iηj1,L] (148)

C = −V

L(k2 + q2)
[κ2,0 + ηκ2,L + ij2,0 − iηj2,L]. (149)
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